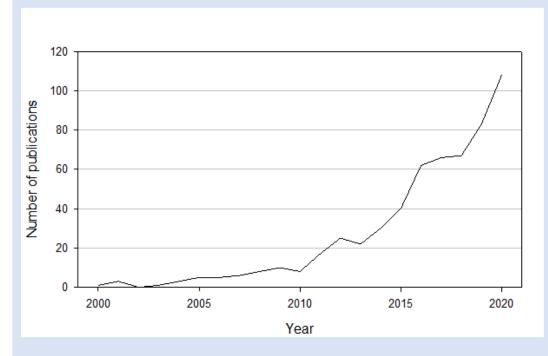
Quality Assessment of Meta-analyses on Soil Organic Carbon Research

Julia Fohrafellner, MSc.

Institute of Soil Research

University of Natural Resources and Life Sciences, Vienna


Why is this topic important for us?

- Meta-analyses are getting more and more popular
- Many of them have low quality!
 - Can I trust the results?
 - How can I develop a high-quality meta-analysis?

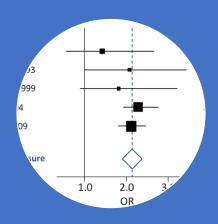
What is the problem?

- Researchers are missing expertise
- No guidelines available for agriculture or soil research

Number of meta-analyses in agriculture published between 2000 and 2020 (own figure).

Philibert et al. (2012) Krupnik et al. (2019)

Aim



Develop a quality-criteria set

Search all available metaanalyses on SOC

Assess quality of 31 SOC meta-analyses

Quality createria set

Literature search

Meta-analysis

Effect size

Results

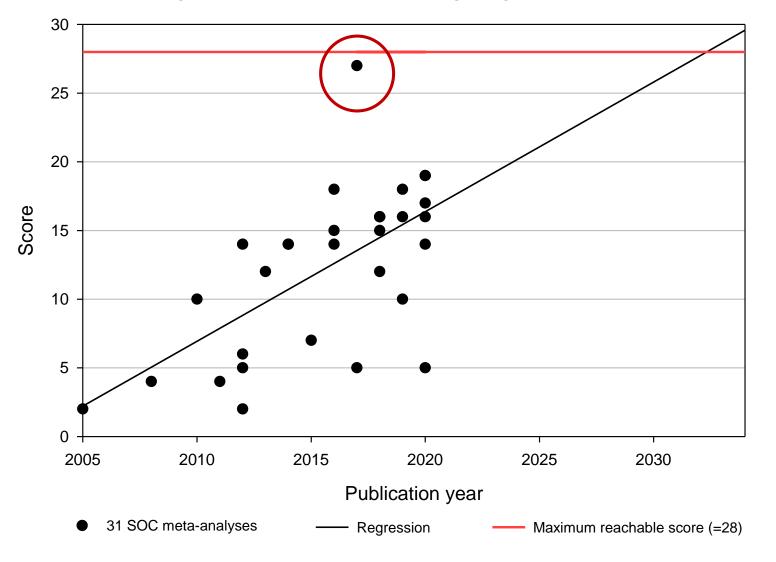
Presentation

Database

Inclusion/exclusion criteria

Standard deviation extracted

Treatment and control


Weighting

Moderators

+ Scores max. 28

A maximum score may be reached only by 2032

Haddaway et al. (2017)

Scores of SOC meta-analyses over time (between 2005-2020) and corresponding regression line including projection until 2035

Importance for EU SOC research

- New MA on most management practises need to be done
 - On EU scale but also national level

- We need EU databases
 - Databases of all MA should be available for everybody

We need meta-analysis experts for EU

Take home message

- Number of meta-analyses rising
- Most of them do not reach sufficient quality
- Conducting a meta-analysis follow strict criteria!
- Critical review existing meta-analysis
- Engage in trainings, use guidelines/criteria-sets
- EU needs a collective database for meta-analyses and experts

References

- Krupnik, T.J., Andersson, J.A., Rusinamhodzi, L., Corbeels, M., Shennan, C., Gérard, B., 2019. Does size matter? a critical review of meta-analysis in agronomy. Experimental Agriculture 55, 200–229. https://doi.org/10.1017/S0014479719000012
- Philibert, A., Loyce, C., Makowski, D., 2012. Assessment of the quality of meta-analysis in agronomy. Agriculture, Ecosystems and Environment 148, 72–82. https://doi.org/10.1016/j.agee.2011.12.003

Resources

Publications:

- Koricheva, J., Gurevitch, J., 2014. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844.
 https://doi.org/10.1111/1365-2745.12224
- Gurevitch, J., Koricheva, J., Nakagawa, S., Stewart, G., 2018. Meta-analysis and the science of research synthesis. Nature 555, 175–182. https://doi.org/10.1038/nature25753

Book:

 Koricheva, J., Gurevitch, J., Mengersen, K. (Eds.), Handbook of Meta-Analysis in Ecology and Evolution. Princton University Press, Princeton

Good meta-analysis:

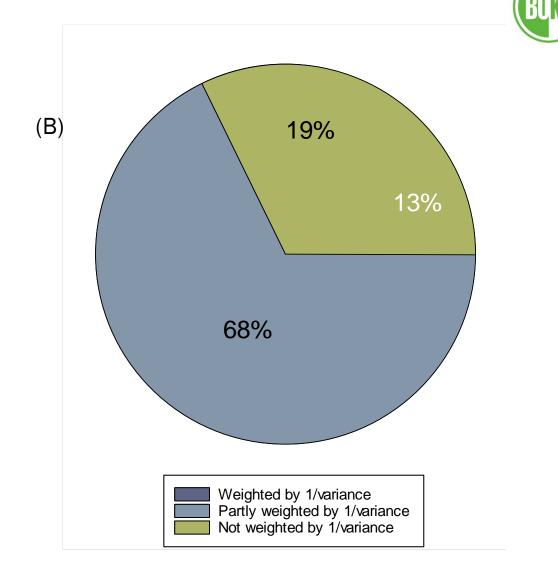
Haddaway, N.R., Hedlund, K., Jackson, L.E., Kätterer, T., Lugato, E., Thomsen, I.K., Jørgensen, H.B., Isberg, P.E., 2017.
 How does tillage intensity affect soil organic carbon? A systematic review, Environmental Evidence. BioMed Central.
 https://doi.org/10.1186/s13750-017-0108-9

Free online trainings:

- https://www.coursera.org/learn/systematic-review
- About systematic reviews, which incorporate meta-analysis: https://systematicreviewmethods.github.io/

Quality assessment of meta-analyses on soil organic carbon research

Julia Fohrafellner¹*, Sophie Zechmeister-Boltenstern², Rajasekaran Murugan², **Elena Valkama**³


- ¹ BIOS Science Austria, Silbergasse 30/3 1190 Vienna, Austria
- ² Institute of Soil Research (IBF), Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Gregor-Mendel-Straße 33 1180 Vienna, Austria
- ³ Natural Resources Institute Finland (Luke), Bioeconomy and environment, Tietotie 4, 31600 Jokioinen, Finland

Correspondence: <u>Julia.fohrafellner@boku.ac.at</u>

Key criteria: Effect size and weighting

- (A) Ratio of effect size metrics used by the meta-analyses
- (B) Ratio of meta-analyses which weighted by the inverse of variance

Only 4 out of 31 SOC meta-analyses classified as "true" meta-analyses

"True"	Not "true"
□ Tillage	Fertilization
Cover crops	Organic
☐ Residue	□ Biochar
Amendments	Diversification
	Combined
	☐ High input
	☐ Set-aside

Nr.	First author and year	Management categories studied
1	Aguilera (2013)	tillage, amendments, organic, cover crop, combined and fertilization
2	Angers (2008)	tillage
3	Bai (2019)	conservation agriculture: tillage, cover crop and biochar
4	Chen (2018)	amendments and fertilizer
5	Cooper (2016)	
		tillage, organic system
6	Feng (2020)	tillage
7	García-Palacios (2018)	organic system
8	Gattinger (2012)	organic system
9	González-Sánchez (2012)	tillage and cover crop
10	Haddaway (2017)	tillage
11	Han (2016)	residue and fertilizer
12	Jian (2020)	cover crop
13	King (2018)	diversification
14	Kopittke (2017)	tillage, organic system and amendments
15	Ladha (2011)	fertilization
16	Li (2020)	tillage and residue
17	Liu (2016)	biochar
18	Luo (2010)	tillage
19	Maillard (2014)	amendments
20	Majumder (2019)	biochar
21	Mathew (2020)	diversification
22	McDaniel (2014)	diversification
23	Meurer (2018)	tillage
24	Mondal (2020)	tillage
25	Ogle (2005)	tillage, high input systems and set-aside
26	Poeplau (2015)	cover crop
27	Sun (2020)	conservation agriculture: tillage, cover crop and residue
28	Tuomisto (2012)	organic system
29	Virto (2012)	tillage
30	Xia (2018)	residue and fertilization
31	Xu (2019)	residue

How to solve the problem

Education

- At University
- Trainings

Reviewers / editors

- Be critical
- Minimum standards

Meta-analysis expert group

- Critical evaluation of published meta-analysis
- Reliable database creation
- Carry out highquality metaanalyses

